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Exact ground states of correlated electronic models:
heavy-fermion/bilayer systems
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Department of Physics, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan

Received 25 March 1996

Abstract. We construct the exact ground states of a class of models for correlated electronic
systems ind dimensions. We introduce generalized models for heavy-fermion systems and
those for bilayer systems. By the optimal ground state approach, we show that the models have
superconducting ground states via theη-pairing mechanism. We also obtain the criteria for the
stability of charge-density-wave states.

1. Introduction

The physics of strongly correlated electronic systems has been a subject of much interest in
recent years. Among these systems particular interest is shown in cuprate superconductors
and several heavy-fermion systems. One approach to the understanding of the low-
temperature physics of these systems is to obtain the exact ground states of the Hamiltonian
which describes electronic correlations. In this paper we introduce generalized models for
heavy-fermion systems and bilayer systems, the mechanism of whose superconductivity is
of current interest. We will then construct the exact ground states of these models. We are
mainly interested in superconducting ground states via the so-calledη-pairing mechanism
[1], which was originally introduced for the construction of the superconducting eigenstates
of the Hubbard model. Theη-pairing states with momentumP are defined by

|9(N)
P 〉 =

(
η
†
P

)N
|0〉 η

†
P =

L∑
j=1

eiPj c
†
j↓c
†
j↑. (1)

Here the total number of the conduction electrons is 2N . These states exhibit off-diagonal
long-range order (ODLRO) [2], which implies the Meissner effect and flux quantization [2–
4], and are thus superconducting. Electronic models whose ground states are theη-pairing
states have recently been intensively studied [5–10].

One simple and effective method for the construction of exact ground states is the
optimal ground state (OGS) approach [9]. Suppose a HamiltonianH is defined by the sum
of the local Hamiltonianshi , H =

∑
i hi . Denote the local ground states ofhi by |loc〉. If

the lowest eigenvalue ofhi is 0 (by adding a constant term), i.e,hi |loc〉 = 0, then a global
state|9〉 constructed from|loc〉 states satisfiesH |9〉 = 0. Since clearly〈φ|H |φ〉 > 0 for
any eigenstate|φ〉 of H , |9〉 is (at least one of) the (global) ground state(s) and is called an
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optimal ground state. In [9] exact ground states of generalized Hubbard models have been
obtained by this method.

In section 2, we consider a generalized model for heavy-fermion systems and obtain the
exact ground states of it. We will show, in particular, that superconductivity can coexist
with various kinds of magnetism (paramagnetic, Néel, and ferromagnetic) via theη-pairing
mechanism. We also obtain the criteria for the stability of charge-density-wave (CDW) states
with different magnetism. In section 3, we examine the effect of layered structures on the
ground states. We introduce the ‘multiple’η-pairing states and CDW states for layered
systems and obtain the conditions for these states to be optimal ground states. Section 4 is
devoted to a summary.

2. A model for heavy-fermion systems

Superconductivity in heavy-fermion systems is of current interest. In Ce- and U-
based heavy-fermion materials, superconducting phases are observed at sufficiently low
temperatures. For several uranium compounds, the coexistence of superconductivity and
antiferromagnetic order is known (for classification of heavy-fermion systems, see [11], for
example). Microscopic descriptions of heavy-fermion systems have been made by several
lattice models. Though some exact results on the ground states have been found for the
Kondo lattice model [12, 13], the periodic Anderson model [14], and the Kondo–Hubbard
model [15, 16], no superconducting ground states have been found in these models. In this
section we introduce a generalized model for strongly correlated heavy-fermion systems and
construct the exact ground states of the model.

We will consider a model which is described by the following Hamiltonian defined on
a d-dimensional lattice ofL sites (〈j l〉 denotes neighbouring sites):

H =
∑
〈j l〉

hjl =
∑
〈j l〉
(h
(c−c)
j l + h(c−l)j l + h(l−l)j l ) (2)

h
(c−c)
j l = h̃j l + U

Z

((
nj↑ − 1

2

)(
nj↓ − 1

2

)
+
(
nl↑ − 1

2

)(
nl↓ − 1

2

))
− µ
Z
(nj + nl) (3)

h̃j l = −t
∑
σ

(c
†
jσ clσ + c†lσ cjσ )+X

∑
σ

(c
†
jσ clσ + c†lσ cjσ )(nj−σ + nl−σ )

+V (nj − 1)(nl − 1)+ Y (c†j↑c†j↓cl↓cl↑ + c†l↑c†l↓cj↓cj↑)
+Jxy

(
Sxj S

x
l + Syj Syl

)
+ JzSzj Szl (4)

h
(c−l)
j l = Kxy

(
Sxj σ

x
j + Syj σ yj

)
+KzSzj σ zj

+Kxy
(
Sxl σ

x
l + Syl σ yl

)+KzSzl σ zl (5)

h
(l−l)
j l = Mxy

(
σxj σ

x
l + σyj σ yl

)
+Mzσ

z
j σ

z
l (6)

wherec†jσ (cjσ ) is the creation (annihilation) operator for conduction electrons (σ =↑,↓),

and {Sα} and {σα} (α = x, y, z) denote the spin-12 spin operators for conduction electrons
and localized spins, respectively. ({σα} are not the Pauli matrices here.) The number
operators for conduction electrons are denoted bynjσ = c

†
jσ cjσ and nj = nj↑ + nj↓.

µ is the chemical potential andZ is the coordination number of thed-dimensional
lattice. The local Hamiltoniansh(c−c)j l , h(c−l)j l , andh(l−l)j l represent the interactions between
conduction electrons themselves, between conduction electrons and localized spins, and
between localized spins, respectively.h(c−c)j l includes, in addition to the usual Hubbard
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interactiont andU , correlated hopping termX, nearest-neighbour Coulomb interactionV ,
pair-hopping termY , and spin interaction of XXZ type.h(c−l)j l describes the anisotropic

Kondo interaction. The effect ofh(l−l)j l is usually assumed to be weak, but its contributions
are still a matter of interest. If we setKxy = Kz and the other parameters to zero except
for t , the model reduces to the usual Kondo lattice model.

Let us apply the OGS method to our Hamiltonian (2). We first determine the region
of the interaction parameters where the model exhibits superconductivity via theη-pairing
mechanism. First look at theη-pairing states with momentumP = 0 andπ . The OGS
approach reduces the problem of the stability of ground states to the diagonalization of the
local Hamiltonianhjl in (2). Write a two-sites state as|aσ bτ 〉 wherea (b) denotes one of
the possible four states at a site for conduction electrons:|0〉, |↑〉, |↓〉, |2〉 = |↑↓〉, andσ
(τ) denotes a single-site (spin) state for localized spins. The number of the possible two-site
states is then 42 × 22 = 64. One can see that|9(N)

P 〉 is constructed from all of (or, some
parts of) the following states (among the eigenstates ofhjl):

eigenstate energy

|0σ0σ 〉 U
2Z + V + Mz

4

|0↑0↓〉 ± |0↓0↑〉 U
2Z + V ±

Mxy

2 − Mz

4

|2σ0σ 〉 + |0σ2σ 〉 U
2Z − V ± Y + Mz

4 + 2µ
Z

(P = 0)

|2σ0σ 〉 − |0σ2σ 〉 U
2Z − V ± Y + Mz

4 + 2µ
Z

(P = π)
|2↓0↑〉 ± |2↑0↓〉 + |0↓2↑〉 ± |0↑2↓〉 U

2Z − V − Mz

4 + Y ±
Mxy

2 + 2µ
Z

(P = 0)

|2↓0↑〉 ± |2↑0↓〉 − |0↓2↑〉 ∓ |0↑2↓〉 U
2Z − V − Mz

4 + Y ±
Mxy

2 + 2µ
Z

(P = π)
|2σ2σ 〉 U

2Z + V + Mz

4 + 4µ
Z

|2↑2↓〉 ± |2↓2↑〉 U
2Z + V ±

Mxy

2 − Mz

4 + 4µ
Z

(7)

where we have imposed the conditiont = X upon which all of the states (7) become
eigenstates ofhjl . (Although this condition is not necessary forη-pairing states withP = π
to be eigenstates of the Hamiltonian (2), we keep it in mind throughout this section for
simplicity.)

Considering the η-pairing states for conduction electrons, we can write the
eigenfunctions of the Hamiltonian (2) in the decoupled form of theη-pairing states and
various kinds of magnetic (paramagnetic, Néel, and ferromagnetic) state:

|9(N)
P ; para〉 = (η†P )N

∏
j∈A

f
†
j↑
∏
l∈A′

f
†
l↓|0〉 (8)

|9(N)
P ;Néel〉 = (η†P )N

∏
j∈B

f
†
j↑
∏
l∈B′

f
†
l↓|0〉 (9)

|9(N)
P ; ferro〉 =

(
η
†
P

)N∏
j

f
†
j↑|0〉 (10)

whereA andA′ are an arbitrary disjoint set of lattice sites which together build up the
whole lattice, andB andB′ are even and odd sublattices on a bipartite lattice. The creation
and annihilation operators forf -electrons (localized spins) are denoted byf †jσ and fjσ
(σ =↑,↓).

Theη-pairing states with paramagnetism,|9(N)
P ; para〉, are constructed completely from

all of the local eigenstates (7) which have the same eigenvalueE = U/2Z+V for Y = ±2V
(+ for P = 0 and− for P = π ), Mxy = Mz = 0, andµ = 0. Demanding that
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|9(N)
P ; para〉 is the optimal ground state, i.e. demanding that all the other eigenvalues of the

local Hamiltonianhjl are higher thanE leads to the following condition for the interaction
parameters:

V < 0
U

Z
< min

{
− 2|t | − 2V + Kz

2
,−V + Jz

4
+ Kz

4
,−V + Jz

4
− Kz

2
,

−V − Jz
4
− 1

2

√
J 2
xy +K2

z ,−V −
|Jxy |

4
− 1

4

√
(Jz + |Jxy |)2+ 4K2

xy,

2t

3
− 2V − Kz

6
+ 2ξ1,−2t

3
− 2V − Kz

6
+ 2ξ2,−V − Jz

12
− Kz

6
+ ξ3

}
(11)

where

ξi = Ai cos(θi/3) Ai cos[(θi + 2π)/3] Ai cos[(θi + 4π)/3] (12)

Ai = 1
3

√
pi cosθi = 1

54A
−3
i qi (13)

with

p1 = F(t) ≡ 3K2
xy + (t −Kz)2+ 15t2

q1 = G(t) ≡ 18K2
xyKz − 2K3

z − 18K2
xyt + 6K2

z t − 24Kzt
2+ 128t3

p2 = F(−t)
q2 = G(−t)
p3 = 12K2

xy + 3K2
z + 3J 2

xy + (Jz −Kz)2

q3 = 2(9J 2
xyJz − J 3

z − 18JzK
2
xy − 9J 2

xyKz + 3J 2
z Kz + 72K2

xyKz + 6JzK
2
z − 8K3

z ).

(14)

For the Ńeel-orderedη-pairing states|9(N)
P ;Néel〉 we have the restrictionsY = ±2V

(+ for P = 0 and− for P = π ), Mxy = 0, andµ = 0 for which all the constituent
local eigenstates have the same energyU/2Z + V − Mz/4. The condition for the state
|9(N)

0 ;Néel〉 to be the optimal ground state is given by

V < 0 0< Mz

U

Z
< min

{
− 2|t | − 2V + 1

2
Kz +Mz,

−V + Jz
4
+ Kz

4
+ Mz

2
,−V + Jz

4
− Kz

2
+ Mz

2
,

−V − Jz
4
− Mz

2
− 1

2

√
J 2
xy +K2

z ,−V −
|Jxy |

4
− Mz

4

−1

4

√
(Jz −Mz + |Jxy |)2+ 4K2

xy,
2t

3
− 2V − Kz

6
+ Mz

3
+ 2ξ1,

−2t

3
− 2V − Kz

6
+ Mz

3
+ 2ξ2,−V − Jz

12
− Kz

6
+ Mz

6
+ ξ3

}
(15)

whereξi is defined in equations (12) and (13) with

p1 = F(t) ≡ 3K2
xy + 3K2

z /4+ 12t2+ (2t +Mz −Kz/2)2
q1 = G(t) ≡ 18K2

xyKz − 2K3
z − 9K2

xyMz + 3K2
zMz + 3KzM

2
z − 2M3

z − 18K2
xyt

+6K2
z t + 12KzMzt − 12M2

z t − 24Kzt
2+ 48Mzt

2+ 128t3

p2 = F(−t)
q2 = G(−t) (16)

p3 = 12K2
xy + 3K2

z + 3J 2
xy + (Jz +Mz −Kz)2
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q3 = 2(9J 2
xyJz − J 3

z − 18JzK
2
xy − 9J 2

xyKz + 3J 2
z Kz + 72K2

xyKz + 6JzK
2
z − 8K3

z

+9J 2
xyMz − 3J 2

z Mz − 18K2
xyMz + 6JzKzMz + 6K2

zMz

−3JzM
2
z + 3KzM

2
z −M3

z ).

The η-pairing states with the fully polarized ferromagnetism,|9(N)
P ; ferro〉, are built

from |0σ0σ 〉, |2σ0σ 〉 ± |0σ2σ 〉 (+ for P = 0 and− for P = π ), and |2σ2σ 〉. These local
states have the same energyU/2Z + V +Mz/4 for Y = ±2V (+ for P = 0 and− for
P = π ) andµ = 0. The state|9(N)

P ; ferro〉 becomes the optimal ground state when the
following inequalities are satisfied:

V < 0 Mz < −|Mxy | U

Z
< min

{
− 2|t | − 2V + Kz

2
,−V + Jz

4
+ Kz

4
,−V

+Jz
4
− Kz

2
− V − Jz

4
− Mz

2
− 1

2

√
(Jxy −Mxy)2+K2

z ,

−V ± 1

4
(Jxy +Mxy)− Mz

4
− 1

4

√
[(Jz −Mz)∓ (Jxy −Mxy)]2+ 4K2

xy,

2t

3
− 2V − Kz

6
− 2Mz

3
+ 2ξ1,−2t

3
− 2V − Kz

6
− 2Mz

3
+ 2ξ2,

−V − Jz

12
− Kz

6
− Mz

3
+ ξ3

}
(17)

whereξi is defined in (12) and (13) with

p1 = F(t) ≡ 3K2
xy + 3K2

z /4+ 3(2t +Mxy)
2+ (2t +Mz −Kz/2)2

q1 = G(t) ≡ 18K2
xyKz − 2K3

z − 9KzM
2
xy − 9K2

xyMz + 3K2
zMz + 18M2

xyMz

+3KzM
2
z − 2M3

z − 18K2
xyt + 6K2

z t − 36KzMxyt + 36M2
xyt + 12KzMzt

+72MxyMzt − 12M2
z t − 24Kzt

2+ 144Mxyt
2+ 48Mzt

2+ 128t3

p2 = F(−t)
q2 = G(−t) (18)

p3 = 12K2
xy + 3K2

z + 3(Jxy +Mxy)
2+ (Jz +Mz −Kz)2

q3 = 2(9J 2
xyJz − J 3

z − 18JzK
2
xy − 9J 2

xyKz + 3J 2
z Kz + 72K2

xyKz + 6JzK
2
z

−8K3
z + 18JxyJzMxy − 18JxyKzMxy + 9JzM

2
xy − 9KzM

2
xy + 9J 2

xyMz

−3J 2
z Mz − 18K2

xyMz + 6JzKzMz + 6K2
zMz + 18JxyMxyMz + 9M2

xyMz

−3JzM
2
z + 3KzM

2
z −M3

z ).

We should note that ferromagnetism is, in a usual situation, not supposed to be compatible
with superconductivity. The states|9(N)

P ; ferro〉, on the contrary, manifestly realize the
coexistence of ferromagnetism and superconductivity via theη-pairing mechanism.

The η-pairing states with momentumP 6= 0, π can also be ground states of the
Hamiltonian (2). In this case, however, the model should be simplified to the one with
t = X andY = V = 0 [9], and then has a large symmetry which causes high degeneracy
of the ground states. It follows that the existence of ODLRO might not guarantee
superconductivity, at least in one dimension [17]. To lift the degeneracy, we need to
‘perturb’ the simple model which contains the parameterst , X, andU only. For instance,
the pair hopping termY explicitly breaks the degeneracy in favour of superconducting
states.
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Consider next briefly the CDW states with different magnetism (at half-filling):

|CDW; para〉 =
∏
i∈C
c
†
i↑c
†
i↓
∏
j∈A

f
†
j↑
∏
l∈A′

f
†
l↓|0〉 (19)

|CDW;Néel〉 =
∏
i∈C
c
†
i↑c
†
i↓
∏
j∈B

f
†
j↑
∏
l∈B′

f
†
l↓|0〉 (20)

|CDW; ferro〉 =
∏
i∈C
c
†
i↑c
†
i↓
∏
j

f
†
j↑|0〉 (21)

whereC is an even (odd) sublattice of a bipartite lattice. These states of the decoupled form
can be eigenfunctions of the Hamiltonian (2), as is the case of theη-pairing states. Using
again the OGS method, we can obtain the criteria for stability of the states (19)–(21).

For the CDW states to be eigenstates of the Hamiltonian (2) we primarily need the
restrictionst = X andY = 0. One can see that|CDW; para〉 is constructed from the local
states|2σ0τ 〉 and |0σ2τ 〉(σ, τ =↑,↓), that |CDW;Néel〉 is from the states|2↑0↓〉 ± |2↓0↑〉
and|0↑2↓〉±|0↓2↑〉, and that|CDW; ferro〉 is from the states|2σ0σ 〉 and|0σ2σ 〉, respectively.
We present the conditions for each of the states (19)–(21) to be an optimal ground state:

|CDW; para〉 (local ground state energy) : U/Z − V + 2µ/Z

V >
|µ|
Z

Mxy = Mz = 0
U

Z
< min

{
− 2|t | + 2V + Kz

2
− 2|µ|

Z
,V + Jz

4

+Kz
4
, V + Jz

4
− Kz

2
, V − Jz

4
− 1

2

√
J 2
xy +K2

z , V −
|Jxy |

4

−1

4

√
(Jz + |Jxy |)2+ 4K2

xy,
2t

3
+ 2V − Kz

6
− 2|µ|

Z
+ 2ξ (1)1 ,

−2t

3
+ 2V − Kz

6
− 2|µ|

Z
+ 2ξ (1)2 , V − Jz

12
− Kz

6
+ ξ (1)3

}
(22)

|CDW;Néel〉 (local ground state energy) : U/Z − V −Mz/4+ 2µ/Z

V >
|µ|
Z

Mxy = 0 Mz > 0
U

Z
< min

{
− 2|t | + 2V + Kz

2
+Mz

−2|µ|
Z
,V + Jz

4
+ Kz

4
+ Mz

2
, V + Jz

4
− Kz

2
+ Mz

2
, V − Jz

4
− Mz

2

−1

2

√
J 2
xy +K2

z , V −
|Jxy |

4
− Mz

4
− 1

4

√
(Jz −Mz + |Jxy |)2+ 4K2

xy,

2t

3
+ 2V − Kz

6
+ Mz

3
− 2|µ|

Z
+ 2ξ (2)1 ,−2t

3
+ 2V − Kz

6
+ Mz

3
− 2|µ|

Z

+2ξ (2)2 , V − Jz

12
− Kz

6
+ Mz

6
+ ξ (2)3

}
(23)

|CDW; ferro〉 (local ground state energy) : U/Z − V +Mz/4+ 2µ/Z

V >
|µ|
Z

Mz < −|Mxy | U

Z
< min

{
− 2|t | + 2V + Kz

2
− 2|µ|

Z
,V + Jz

4

+Kz
4
, V + Jz

4
− Kz

2
, V − Jz

4
− Mz

2
− 1

2

√
(Jxy −Mxy)2+K2

z ,

×V ± 1

4
(Jxy +Mxy)− Mz

4
− 1

4

√
[(Jz −Mz)∓ (Jxy −Mxy)]2+ 4K2

xy,

×2t

3
+ 2V − Kz

6
− 2Mz

3
− 2|µ|

Z
+ 2ξ (3)1 ,
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−2t

3
+ 2V − Kz

6
− 2Mz

3
− 2|µ|

Z
+ 2ξ (3)2 , V − Jz

12
− Kz

6
− Mz

3
+ ξ (3)3

}
(24)

whereξ (1)i , ξ
(2)
i , andξ (3)i are the same asξi in (11), (15) and (17), respectively. To obtain

the best bound, we may chooseµ = 0.

3. Bilayer generalized Hubbard model

The presence of a double CuO2 layer in materials such as YBa2Cu3O7−y compounds
is considered to play a significant role in high-Tc superconductivity. Some numerical
calculations made on the bilayer Hubbard model find no evidence for superconducting
ODLRO [18, 19], suggesting a need for a different mechanism (model) for superconductivity.
In this section we will consider ann-layered generalized Hubbard model which is described
by the following Hamiltonian defined on ad-dimensional lattice ofL sites (〈j l〉 and 〈λν〉
denote neighbouring sites and neighbouring layers, respectively):

H =
∑
〈j l〉

hjl =
∑
〈j l〉

(∑
λ

h
(intra)
j lλ +

∑
〈λν〉
(h
(inter)
jλν + h(inter)lλν )+

∑
λ

h
(site)
j l

)
(25)

with

h
(intra)
j lλ = −t‖

∑
σ

(c
†
jλσ clλσ + c†lλσ cjλσ )+X‖

∑
σ

(c
†
jλσ clλσ + c†lλσ cjλσ )(njλ−σ + nlλ−σ )

+V‖(njλ − 1)(nlλ − 1)+ Y‖(c†jλ↑c†jλ↓clλ↓clλ↑ + c†lλ↑c†lλ↓cjλ↓cjλ↑)
+Jxy‖

(
SxjλS

x
lλ + SyjλSylλ

)
+ Jz‖SzjλmSzlλ (26)

h
(inter)
jλν = −t⊥

∑
σ

(c
†
jλσ cjνσ + c†jνσ cjλσ )+X⊥

∑
σ

(c
†
jλσ cjνσ + c†jνσ cjλσ )(njλ−σ + njν−σ )

+V⊥(njλ − λ)(njν − λ)+ Y⊥(c†jλ↑c†jλ↓cjν↓cjν↑ + c†jν↑c†jν↓cjλ↓cjλ↑)
+Jxy⊥

(
SxjλS

x
jν + SyjλSyjν

)
+ Jz⊥SzjλmSzjν

h
(site)
j l = U

Z
l

((
njλ↑ − 1

2

)(
njλ↓ − 1

2

)
+
(
nlλ↑ − 1

2

)(
nlλ↓ − 1

2

))
− µ
Z
(njλ + nlλ) (27)

where c†jλσ (cjλσ ) and {Sαjλ} (α = x, y, z) are the creation (anihilation) operator and the

spin-1
2 spin operators for electrons in theλth layer at sitej (σ =↑,↓), respectively. The

chemical potential and the coordination number of thed-dimensional lattice are denoted by
µ andZ, respectively. We have decomposed the Hamiltonian into the three parts. The local
Hamiltoniansh(intra)j lλ andh(inter)jλν represent the (nearest-neighbour) interactions between the
electrons at the neighbouring sites and at the neighbouring layers, respectively. We take
into consideration, in addition to the usual Hubbard interactionst‖, t⊥, andU , correlated
hopping terms (X‖ and X⊥), nearest-neighbour Coulomb interactions (V‖ and V⊥), pair
hopping terms (Y‖ andY⊥), and spin interactions of XXZ type. In the present case, what
we have to diagonalize in the OGS approach is the local Hamiltonianhjl in (25).

For a superconducting state of layered systems, we introduce the ‘multiple’η-pairing
state with a set of momenta{P } = {P1, P2, . . . , Pn}, each element of which denotes the
momentum of a respective layer,

|9(N1,N2,...,Nn)
{P } 〉 =

n∏
λ=1

(η
†
Pλ
)Nλ |0〉 η

†
Pλ
=

L∑
j=1

eiPλj c
†
jλ↓c

†
jλ↑ (28)
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where 2Nλ is the number of the electrons in theλth layer. Note that we can assign different
momenta for different layers. This situation is out of the scope of the present study, though.

In the remaining part of this section we restrict ourselves to the ‘double’η-pairing states,
namely, we study two-chain systems ifd = 1, bilayer systems ifd = 2, and so on. In the
OGS approach, we have only to deal with the problem of the diagonalization of the local
Hamiltonian (25). Write a local (two-site) state as|aσ bτ 〉 wherea (b) denotes a single-site
state of electrons in the first layer, andσ (τ ) in the second layer. In the present case, the
number of the possible two-site states is 42×42 = 256. One can see that theη-pairing state
|9(N1,N2)
{P1,P2} 〉 is constructed from all of (some of) the following states (among the eigenstates

of hjl):

eigenstate energy

|0000〉 U
Z
+ 2V‖

|2000〉 ± |0020〉 U
Z
± Y‖ + 2µ

Z

|0200〉 ± |0002〉 U
Z
± Y‖ + 2µ

Z

α±(|0220〉 + |2002〉)+ |2200〉 + |0022〉 U
Z
− 2V‖ ±

√
Y 2
‖ + V 2

⊥ + 4µ
Z

|2020〉 U
Z
+ 2V‖ − 2V⊥ + 4µ

Z

|0202〉 U
Z
+ 2V‖ − 2V⊥ + 4µ

Z

|2202〉 ± |0222〉 U
Z
± Y‖ + 6µ

Z

|2220〉 ± |2022〉 U
Z
± Y‖ + 6µ

Z

|2222〉 U
Z
+ 2V‖ + 8µ

Z

(29)

with

α± = Y‖
/(

V⊥ ±
√
V 2
⊥ + Y 2

‖

)
(30)

where we have required the restrictionst‖ = X‖, t⊥ = X⊥, andY⊥ = 0 upon which all of
the eigenstates (29) become eigenstates ofhjl in (25). (Although the conditionst‖ = X‖
and t⊥ = X⊥ are not necessary forη-pairing states with{P } = {π, π} to be eigenstates of
the Hamiltonian (25), we keep it in mind throughout this section for simplicity.)

The η-pairing states with{P } = {0, 0} and{P } = {π, π} are eigenstates ofH with the
same eigenvalueU/Z + 2V‖ if we set t‖ = X‖, X⊥ = t⊥, Y‖ = ±2V‖ (+ for {P } = {0, 0}
and− for {P } = {π, π}), V⊥ = 0, andµ = 0. These states are constructed from all of
the eigenstates (29) (+ for {P } = {0, 0} and− for {P } = {π, π}). On account of the
conditionst‖ = X‖ and t⊥ = X⊥, the model has the particle–hole symmetry which reduces
the diagonalization problem in theNe-electron sector (Ne > 5) to that in the sector of
8− Ne electrons. We demand theη–pairing state to be the optimal ground state to obtain
the restrictions on the interaction parameters. As a result, we can write the inequality which
should be satisfied for theη-pairing states with{P } = {0, 0},

V‖ < 0
U

Z
< min

{
D,

1

8

(
−6V‖ + Jz‖ −

√
(16t⊥)2+ (4V‖ + Jz‖)2

)
,

1

8

(
−2|Jxy‖| − Jz‖ − 12V‖ −

√
(16t‖)2+ (2|Jxy‖| + Jz‖ − 4V‖)2

)
,

1

8

(
−2Jxy‖ − Jz‖ − 28V‖ −

√
(16t‖)2+ (2Jxy‖ + Jz‖ + 12V‖)2

)
,
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1

12
(Jz‖ + Jz⊥)+min

(
−5V‖

3
+ ξ1, 5V‖ + ξ5

)
,

− 1

12
(Jz‖ + Jz⊥)+min

(
−5V‖

3
+ Jxy‖

6
+ ξ2,−5V‖

3
− Jxy‖

6
+ ξ6,

5V‖ + Jxy‖
6
+ ξ7

)
,

−14V‖
3
+min

(
f1(t‖, t⊥), f1(−t‖, t⊥), f1(t‖,−t⊥), f1(−t‖,−t⊥)

) }
(31)

and that for{P } = {π, π},

V‖ < 0
U

Z
< min

{
D,−6V‖ −

√
3t2⊥ + (2|t‖| + |t⊥| − 4V‖)2,

1

8

(
−28V‖ + Jz‖ −

√
(16t⊥)2+ (12V‖ − Jz‖)2

)
,

1

8

(
−2Jxy‖ − Jz‖ − 12V‖ −

√
(16t‖)2+ (2Jxy‖ + Jz‖ − 4V‖)2

)
,

1

8

(
+2Jxy‖ − Jz‖ − 28V‖ −

√
(16t‖)2+ (2Jxy‖ − Jz‖ − 12V‖)2

)
,

−5V‖
3
+ 1

12
(Jz‖ + Jz⊥)+ ξ1,

− 1

12
(Jz‖ + Jz⊥)+min

(
−5V‖

3
+ ξ2, 5V‖ + ξ7

)}
(32)

where

D = min

{
− 2|t‖| − 2|t⊥| − 2V‖,−2V‖ − |Jz⊥|

4
,−V‖ + Jz‖

4
,

−V‖ − |Jxy‖|
2
− Jz‖

4
,−2V‖ − 1

8

(
|Jz⊥| +

√
(16t‖)2+ J 2

z⊥

)
,

−2

3

(|t‖| + |t⊥|)− 4V‖
3
+ 1

6
(Jz‖ + Jz⊥),−V‖ − |Jxy‖|

4
,

−V‖ − 1

4

(
Jz‖ +

√
4J 2

xy‖ + J 2
z⊥
)
,−4V‖

3
− 1

18
(Jz‖ + Jz⊥)

+min
(
f2(t‖, t⊥), f2(−t‖, t⊥), f2(t‖,−t⊥), f2(−t‖,−t⊥)

) }
(33)

f1(t‖, t⊥) = 2
3(t‖ − t⊥)+ 2ξ3 f2(t‖, t⊥) = 2

9(t‖ + t⊥ + 3ξ4) (34)

and

ξi = Ai cos(θi/3), Ai cos[(θi + 2π)/3], Ai cos[(θi + 4π)/3] Ai = 1
3

√
pi

cosθi = 1
54A

−3
i qi (35)

with

p1 = F1(V‖, Jxy‖) ≡ 48(t2‖ + t2⊥)+ 3J 2
z⊥/16+ (8V‖ + 2Jz‖ − Jz⊥)2/16

q1 = G1(V‖, Jxy‖) ≡ J 3
z⊥/4− 3J 2

z⊥Jz‖/8− 3Jz⊥J 2
z‖/8+ J 3

z‖/4

+t2‖ (72Jz⊥ − 144Jz‖ − 576V‖)− 3J 2
z⊥V‖/2− 3Jz⊥Jz‖V‖ + 3J 2

z‖V‖

−6Jz⊥V 2
‖ + 12Jz‖V 2

‖ + 16V 3
‖ + t2⊥(−144Jz⊥ + 72Jz‖ + 288V‖)
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p2 = F2(V‖, Jxy‖) ≡ 48(t2‖ + t2⊥)+ 3J 2
z⊥/16+ (8V‖ + 4Jxy‖ − 2Jz‖ + Jz⊥)2/16

q2 = G2(V‖, Jxy‖) ≡ 2J 3
xy‖ + 3J 2

xy‖Jz⊥/2− 3Jxy‖J 2
z⊥/4− J 3

z⊥/4− 3J 2
xy‖Jz‖

−3Jxy‖Jz⊥Jz‖/2+ 3J 2
z⊥Jz‖/8+ 3Jxy‖J 2

z‖/2+ 3Jz⊥J 2
z‖/8− J 3

z‖/4

+t2‖ (−288Jxy‖ − 72Jz⊥ + 144Jz‖ − 576V‖)+ 12J 2
xy‖V‖ + 6Jxy‖Jz⊥V‖

−3J 2
z⊥V‖/2− 12Jxy‖Jz‖V‖ − 3Jz⊥Jz‖V‖ + 3J 2

z‖V‖ + 24Jxy‖V 2
‖

+6Jz⊥V 2
‖ − 12Jz‖V 2

‖ + 16V 3
‖ + t2⊥(144Jxy‖ + 144Jz⊥ − 72Jz‖ + 288V‖)

p3 = 6(t2‖ + 2t2⊥ + 4V 2
‖ )+ (t‖ + 2t⊥ + 2V‖)2+ 9(t‖ − 2V‖)2 (36)

q3 = 128t3⊥ − 128t3‖ + 96t2⊥V‖ − 192t⊥V 2
‖ − 1024V 3

‖
+t2‖ (−48t⊥ + 384V‖)+ t‖(48t2⊥ + 384t⊥V‖ + 768V 2

‖ )

p4 = 6t2⊥ + J 2
z⊥/2+ (3t⊥ + Jz⊥)2+ (2t‖ − t⊥ + Jz‖ − Jz⊥/2)2

q4 = 9J 2
xy‖Jz⊥ + 2J 3

z⊥ − 18J 2
xy‖Jz‖ − 3J 2

z⊥Jz‖ − 3Jz⊥J 2
z‖ + 2J 3

z‖
+(18J 2

xy‖ + 12J 2
z⊥ − 12Jz⊥Jz‖ − 6J 2

z‖)t⊥ + (−48Jz⊥ + 24Jz‖)t2⊥ − 128t3⊥
+(−36J 2

xy‖ + 36Jxy‖Jz⊥ − 6J 2
z⊥ − 72Jxy‖Jz‖ − 12Jz⊥Jz‖ + 12J 2

z‖
+(72Jxy‖ − 24Jz⊥ − 24Jz‖)t⊥ + 48t2⊥)t‖
+(−144Jxy‖ + 24Jz⊥ − 48Jz‖ + 48t⊥)t2‖ − 128t3‖

p5 = F1(−3V‖, Jxy‖) q5 = −G1(−3V‖, Jxy‖)

p6 = F2(V‖,−Jxy‖) q6 = −G2(V‖,−Jxy‖)
p7 = F2(−3V‖,−Jxy‖) q7 = −G2(−3V‖,−Jxy‖).
As is the case for the model for heavy fermions, theη-pairing states with momentum
{P } 6= {0, 0}, {π, π} are ground states of the Hamiltonian (25) if we chooset‖ = X‖,
t⊥ = X⊥, Y‖ = Y⊥ = V‖ = V⊥ = 0. These conditions lead to high degeneracy of the
ground states of the model. When we take into consideration the pair hopping termsY‖ and
Y⊥, the degeneracy is lifted in favour of superconducting states.

Next we obtain the criteria for the stability of CDW states. The CDW states (at half
filling) are defined by

|CDW〉 =
∏
i∈C
c
†
i1↑c

†
i1↓
∏
j∈C ′

c
†
j2↑c

†
j2↓|0〉 (37)

(C andC ′ are even (odd) sublattices of a bipartite lattice) and are constructed from the local
states|2002〉 and |0220〉 (or the states|2200〉 and |0022〉). These states become eigenstates
of the local Hamiltonianhij in (25) with the same energyE = U/Z − 2V‖ − 2V⊥ + 4µ/Z
if we chooseY‖ = Y⊥ = 0. Demand that all the remaining eigenenergies are higher thanE

to obtain the inequality,

V‖ > 0 V⊥ > 0 V‖ + V⊥ > |µ|
Z

U

Z
< min

{
− 2|t‖| − 2|t⊥| + 6(V‖ + V⊥)− 6|µ|

Z
, 2(V‖ + V⊥)− 2|µ|

Z
,

V‖ + V⊥ − |Jxy‖|
4

,min(V‖, V⊥)+ 2(V‖ + V⊥)+ Jz⊥
4
− 2|µ|

Z
,

3V‖ + 2V⊥ − |Jxy‖|
2
− Jz‖

4
− 2|µ|

Z
,
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2V‖ + 5V⊥
2
− 1

8

(
|Jz⊥| +

√
(16t‖)2+ (4V⊥ − Jz⊥)2

)
− 2|µ|

Z
,

V‖ + 2V⊥ + Jz‖
4
,−(V‖ + V⊥)− Jz‖

4

(
Jz‖ +

√
4J 2

xy‖ + J 2
z⊥
)
,

3V‖
2
+ 2V⊥ + 1

8

(
Jz⊥ −

√
(16t⊥)2+ (4V‖ − Jz⊥)2

)
,

5V‖
2

+2V⊥ − 1

8

(
2Jxy‖ + Jz⊥ +

√
(16t⊥)2+ (4V‖ − 2Jxy‖ − Jz‖)2

)
− 2|µ|

Z
,

1

12
(Jz‖ + Jz⊥)− 2|µ| +min

(
7

3
(V‖ + V⊥)+ ξ1,−7

3
(V‖ + V⊥)+ ξ5

)
,

− 1

12
(Jz‖ + Jz⊥)− 2|µ|

+min

(
7V‖

3
+ Jxy‖

6
+ ξ2,−7V‖

3
+ Jxy‖

6
+ ξ6,−7V‖

3
− Jxy‖

6
+ ξ7

)
,

10V‖
3
− |µ| +min

(
g1(t‖, t⊥), g1(−t‖, t⊥), g1(t‖,−t⊥), g1(−t‖,−t⊥)

)
,

− 1

18
(Jz‖ + Jz⊥)− 2|µ|

3

+min
(
g2(t‖, t⊥), g2(−t‖, t⊥), g2(t‖,−t⊥), g2(−t‖,−t⊥)

) }
(38)

where

g1(t‖, t⊥) = 2
3(−t‖ + t⊥)+ 2ξ3 g2(t‖, t⊥) = − 2

9(t‖ + t⊥ − 3ξ4) (39)

andξi is defined in equations (35) with

p1 = F1(V‖, V⊥) ≡ 48(t2‖ + t2⊥)+ 3(Jz⊥ + 4V⊥)2/16+ (8V‖ − 4V⊥ + 2Jz‖ − Jz⊥)2/16

q1 = G1(V‖, V⊥) ≡ J 3
z⊥/4− 3J 2

z⊥Jz‖/8− 3Jz⊥J 2
z‖/8+ J 3

z‖/4

+(3J 2
z⊥ − 3Jz⊥Jz‖ − 3J 2

z‖/2)V⊥ + (12Jz⊥ − 6Jz‖)V 2
⊥

+16V 3
⊥ + t2‖ (72Jz⊥ − 144Jz‖ + 288V⊥ − 576V‖)

+(−3J 2
z⊥/2− 3Jz⊥Jz‖ + 3J 2

z‖ + (−12Jz⊥ − 12Jz‖)V⊥ − 24V 2
⊥)V‖

+(−6Jz⊥ + 12Jz‖ − 24V⊥)V 2
‖ + 16V 3

‖
+t2⊥(−144Jz⊥ + 72Jz‖ − 576V⊥ + 288V‖)

p2 = F2(V‖, V⊥, Jxy‖) ≡ 48(t2‖ + t2⊥)+ 3(4V⊥ − Jz⊥)2/16

+(8V‖ − 4V⊥ + 4Jxy‖ − 2Jz‖ + Jz⊥)2/16

q2 = G2(V‖, V⊥, Jxy‖) ≡ 2J 3
xy‖ + 3J 2

xy‖Jz⊥/2− 3Jxy‖J 2
z⊥/4− J 3

z⊥/4− 3J 2
xy‖Jz‖

−3Jxy‖Jz⊥Jz‖/2+ 3J 2
z⊥Jz‖/8+ 3Jxy‖J 2

z‖/2+ 3Jz⊥J 2
z‖/8− J 3

z‖/4

+(−6J 2
xy‖ + 6Jxy‖Jz⊥ + 3J 2

z⊥ + 6Jxy‖Jz‖ − 3Jz⊥Jz‖ − 3J 2
z‖/2)V⊥

+(−12Jxy‖ − 12Jz⊥ + 6Jz‖)V 2
⊥ + 16V 3

⊥
+t2‖ (−288Jxy‖ − 72Jz⊥ + 144Jz‖ + 288V⊥ − 576V‖)

+(12J 2
xy‖ + 6Jxy‖Jz⊥ − 3J 2

z⊥/2− 12Jxy‖Jz‖ − 3Jz⊥Jz‖ + 3J 2
z‖

+(−24Jxy‖ + 12Jz⊥ + 12Jz‖)V⊥ − 24V 2
⊥)V‖

+(24Jxy‖ + 6Jz⊥ − 12Jz‖ − 24V⊥)V 2
‖ + 16V 3

‖
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+t2⊥(144Jxy‖ + 144Jz⊥ − 72Jz‖ − 576V⊥ + 288V‖) (40)

p3 = 3(3t2‖ + 4t2⊥ + 2V 2
‖ )+ (t‖ + 2t⊥ − 2V‖ + 4V⊥)2+ 6(t‖ − V‖)2

q3 = 128t3⊥ − 128t3‖ − 128V 3
⊥ + t2⊥(192V⊥ − 96V‖)+ 192V 2

⊥V‖ + 192V⊥V 2
‖

−128V 3
‖ + t2‖ (−48t⊥ − 96V⊥ + 192V‖)+ t⊥(−192V 2

⊥ + 192V⊥V‖ + 96V 2
‖ )

+t‖(48t2⊥ − 96V 2
⊥ + t⊥(−96V⊥ − 96V‖)− 192V⊥V‖ + 192V 2

‖ )

p4 = 6t2⊥ + J 2
z⊥/2+ (3t⊥ − Jz⊥)2+ (2t‖ − t⊥ − Jz‖ + Jz⊥/2)2

q4 = −9J 2
xy‖Jz⊥ − 2J 3

z⊥ + 18J 2
xy‖Jz‖ + 3J 2

z⊥Jz‖ + 3Jz⊥J 2
z‖ − 2J 3

z‖
+(18J 2

xy‖ + 12J 2
z⊥ − 12Jz⊥Jz‖ − 6J 2

z‖)t⊥ + (48Jz⊥ − 24Jz‖)t2⊥ − 128t3⊥
+(−36J 2

xy‖ + 36Jxy‖Jz⊥ − 6J 2
z⊥ − 72Jxy‖Jz‖ − 12Jz⊥Jz‖ + 12J 2

z‖
+(−72Jxy‖ + 24Jz⊥ + 24Jz‖)t⊥ + 48t2⊥)t‖
+(144Jxy‖ − 24Jz⊥ + 48Jz‖ + 48t⊥)t2‖ − 128t3‖

p5 = F1(−V‖,−V⊥) q5 = G1(−V‖,−V⊥)
p6 = F2(−V‖,−V⊥, Jxy‖) q6 = G2(−V‖,−V⊥, Jxy‖)
p7 = F2(−V‖,−V⊥,−Jxy‖) q7 = G2(−V‖,−V⊥,−Jxy‖). (41)

We can control the fillings by changing the chemical potentialµ. To obtain the best bound,
we may chooseµ = 0.

4. Summary

We have constructed the exact ground states of models for correlated electronic systems. We
introduced generalized models for heavy-fermion/bilayer systems. By the optimal ground
state approach we have determined the parameter regions where the model has theη-pairing
ground states which exhibit off-diagonal long-range order, and are thus superconducting.
For heavy fermions, in particular, the eigenfunctions of the model have the decoupling
property via theη-pairing mechanism which allows the coexistence of superconductivity
and various kinds of magnetism (paramagnetism, Néel and ferromagnetism). We have also
obtained the criteria for the stability of charge-density-wave states.
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